Design Methodology for NASREM Software
Development

Dr. Ronald Lumia
Robot Systems Division
National Institute of Standards and Technology
Bldg 220, Rm B-127
Gaithersburg, Maryland 20399

Abstract

Using a functional architecture such as the NASA/NIST Standard Reference Model
for Telerobot Control System Architecture (NASREM) when implementing specific
applications is helpful because much of the work resides in the infrastructure and the
infrastructure is the same for all applications. Rather than recreating this infrastruc-
ture, the approach is to develop. the additional 20% of the code which tailors the in-
frastructure for the specific application. This paper describes the process by which a
system based on NASREM is developed.

1. Introduction

The Intelligent Controls Group of the Robot Systems Division at NIST has been
implementing the NASREM architecture for several years. While the implementation
was in support of NASA's Flight Telerobotic Servicer, the approach was to build a
generic robot control system testbed. NASREM is a hierarchical system with six lev-
els which is described in greater detail in [1-7].

Since the NASREM architecture has been developed in a technology independent
manner, there are two types of modifications which must be allowed. First, the archi-
tecture must be able to support different application areas. The NASREM architecture
has been use for underwater vehicles [8], mining vehicles [9], autonomous land vehi-
cles [10], as a basis for the Next Generation Controller, as well as for its original space
application. Second, the architecture must facilitate the integration of new sensors
even if the application does not change so that the implementation may evolve with
technology. This paper describes how a system is developed using NASREM as the
functional architecture, i.e., a NASREM methodology.

A methodology will be defined as the set of tools, techniques and evaluation cri-
teria applicable to the system development steps. An effective methodology must be
well-suited to human capabilities and limitations as well as the technology capabili-
ties and limitations. The major human limitation is dealing with complexity. Humans
cope with complexity by decomposing complicated systems into groups of simpler
subsystems. To handle complexity, system developers adopt bottom-up strategies to
express experience-based knowledge, top-down strategies for planning and design,
and pattern recognition to organize the collection of subsystems. We will define the
NASREM Methodology as the collection of concepts and techniques that are geared
toward improving the analysis, design and implementation of real-time control appli-
cations.

The paper is organized as follows. First, the basic tenets of a NASREM imple-
mentation are given. This is followed by a description of the system development
mcthodology Then, a NASREM robot control system is described which is an exam-
ple of using the methodology.

2. NASREM Tenets

NASREM provides fundamental real-time control system analysis, design and
implementation strategies and heuristics that we will term tenets. We will use the
word tenet, here, to mean guidelines and rules of thumb which characterize the phi-
losophy of the NASREM methodology. The NASREM Methodology is based on the
following empirically established method tenets:

task (or process) oriented decomposition

controller node building blocks, a controller node C is a 4-tuple C = (SP, WM, BG, HI) con-
sisting of a sensor processing component SP, a world modeling component WM, a be-
havior generation control component BG and a human interface component HI, These
functions are assumed 1o exist in each controller node.

each controller node C has one supervisor at a time, and to limit complexity, only seven + or
- two subordinates per controller node

human interface is possible at all controller nodes

system controller organized as a hierarchical collection of controller nodes C,

control hierarchy organized around tasks top-down, and equipment bottom-up

order of magnitude differences in spatial and temporal resolution partitions controller nodes
into adjacent hierarchical levels

design emphasis on concwrency vis a vis real-time processing 10 handle computationally in-
tensive control and sensor operations - especially as hardware costs continue to fall

controllers execute as finite state machines exhibiting synchronous control at the lowest lev-
els transitioning to asynchronous control at the highest levels

2.1. Task oriented decomposition

Every methodology seeks to devise a model of the problem domain which explic-
itly represents and emphasizes the most critical components of the problem while
simplifying those aspects which have a lesser impact on the solution being sought.
Every model is, after all, a simplification of the real world. The objective is to choose
an abstraction (or a set of abstractions) that highlights the parts of the problem that
make a difference in the quality and efficiency of the solution. That is why it is so im-
portant to choose a methodology which matches the problem domain. In the domain
of intelligent machine control systems we believe tasks are the driving factor.

We characterize the domain of intelligent machine control systems to include the
control of electro-mechanical devices, designed to perform some useful work, using
computerized control. Intelligent machines are further assumed to possess the capa-
bility to respond to the physical environment in some intelligent way, in real-time.
This definition is intended to cover automation systems, embedded systems and ro-
botic systems.

Within this problem domain, practical control systems solutions are always de-
fined within the context of the tasks to be performed (electro-mechanical actions to

be taken). The process of designing practical system solutions involves balancing
trade-offs between general purpose capabilities and task specific requirements. Ex-
amples of such trade-offs can be seen in common human transportation systems. Peo-
ple have developed automobiles, trains, buses, aircraft, rockets, elevators and escala-
tors all for transportation but each for a specialized class of transportation tasks. Rec-
ognizing this fact, this tenet suggests thar task decomposition should be explicitly
represented in modeling intelligent real-time control systems. Further it stipulates
that task knowledge (control flow), task specific object knowledge and task specific
data processing knowledge should be encapsulated within controller modules which
respond with commands to their subordinates to accomplish system tasks when stim-
ulated by task commands from their supervisors or other communications (task state
knowledge) through global memory.

2.2. Hierarchical Organization

The primary objectives of the NASREM method is to manage software complex-
ity, improve human understanding of the design and to provide for robust, efficient,
coordinated, verifiable, real-time performance. Hierarchical organization has been
found to be a key element in realizing these goals. Humans have used hierarchical or-
ganizations to manage complexity and real-time coordination problems throughout
history.

There are also numerous examples of the power of hierarchical organization in the
animal world. Humans, many insects and other animals instinctively form social hi-
erarchies to build habitats, hunt for or produce food, reproduce, nurture their young
and in general improve their quality of life and their chances of survival. People use
hierarchies whenever complex real-time coordination of more than one individual is
necessary. Notable examples are sports teams (managers, coaches, team captains/sig-
nal callers, player positions and specialized team groupings), enterprise structures
(corporations, chief officers, divisions, plants, departments, sections, groups, worker
specialties) and military organizations (Commander in Chief, Army, Theater, Corps,
Division, Brigade, Battalion, Company, Platoon, Squad, Soldier). These organiza-
tional structures employ strategies and tactics in their procedures in order to deal with
unstructured environments and uncertain information in an ordered way. Based on
these structured plans measures of performance can be defined to help refine real-
time performance. These highly organized groups typically spend a significant
amount of time training and practicing their designated functions in order to maxi-
mize their real-time performance and the quality of the result. The NASREM analogy
to these examples is a highly modular partitioning of process intelligence codified
into a hierarchy of controller nodes. Each controller node has a bounded clearly de-
fined range of authority and responsibility, each deals with a particular layer of ab-
straction and timing horizons within the problem domain and each has clearly defined
vertical and horizontal channels of communication.

A popular alternative software organizational structure often used in software en-
gineering is the notion of “independent cooperating agents.” In this technique soft-
ware agents are created which are roughly equal in authority and responsibility. These
agents must then negotiate for a share of control over a finite pool of resources (com-
puting time, actuators, sensors, fuel, power, goal designation, direction and speed of

movement, etc.) in order to achieve a desired set of system goals. They negotiate ac-
cording to some established set of arbitration rules (priorities, voting, ordered sets of
constraint conditions, etc.) and usually use message passing over a computer network
as a communications scheme. Some have suggested applying these techniques to real-
time intelligent machine applications. This technique is analogous to the human par-
liamentary organizational structure. Humans use this type of structure to establish
policy, to define arbitration rules, to divide resources and to create or modify rules or
laws of social interaction (e.g., government, civic organizations, standards bodies,
etc.). Such human organizations are not known for there efficient real-time perfor-
mance. The results achieved using this structure are also highly unpredictable. The
principle utility of such structures is to insure some measure of “fairness” in the result
as well as a social sense of “due process.” In short, we don’t believe this technique
alone (without hierarchical organization) is a better choice for achieving robust, effi-
cient, coordinated, verifiable, real-time performance. On the other hand, a NASREM
implementation could certainly benefit from the judicious use of these techniques
when the application warrants them.

23. Hierarchy organized around tasks top-down, and equipment bottom-up

The process of developing a NASREM application and organizing its control
components is an iterative one which begins with a top-down decomposition of tasks
to be performed (forming a task tree structure) and the organization of a hierarchy of
controller nodes, which will be responsible for coordinating the tasks to be performed
using a bottom-up design procedure. The order in which these two activities take
place is not specified and is less important than realizing that the objective of this it-
erative design process is to map the task tree onto the controller hierarchy.

By organizing a NASREM hierarchy around the equipment to be controlied (ma-
chines, actuators and sensors) in a bottom-up process we can minimize and simplify
the difficult real-time problems of resource contention, conflict resolution and sched-
uling. Every man-made machine ultimately has a finite number of actuators and sen-
sors through which it can influence the problem environment. We can capitalize on
this-fact by structuring a supervisor-subordinate hierarchy of intelligent controller
nodes using a bottom-up approach starting from the actuators and sensors that the in-
telligent machine will be directly controlling. We can ensure that every subordinate is
directed by only one supervisor at any instant in time (one software read/compute/ex-
ecute cycle) and that there is a clearly defined supervisory controller for each individ-
ual actuator and sensor at any instant in time. Using this structure it is then possible
to define coordination and scheduling plans to be used by each controller within the
scope of its level of authority and responsibility. Furthermore, because the hierarchi-
cal structure predefines the responsibility and authority of each controller and the re-
sources controlled at any instant in time, the problems of resource contention, conflict
resolution and scheduling are dealt with locally within each supervisory controller (as
defined by its local library of plans) and are independent of the concurrent actions of
all other controllers at the same level of authority.

Whenever practical the designer should group hardware components (actuators
and sensors) and software components {NASREM controllers) so as to minimize the
number of interfaces necessary in order to implement closed loop control through the

NASREM hierarchy at the lowest level practical. The intent of this guideline is to lo-
calize the design of closed loop control within NASREM (into modular subsystems)
in order to minimize the potential for “ripple effect” when evolving, expanding or
maintaining the implementation and to minimize the need for and extent of hi gh band-
width feedback loops. Communications bottlenecks can also be eliminated by judi-
cious grouping of closely coupled components. Physical constraints within the prob-
lem domain often will conflict with this guideline thereby imposing engineering
trade-off decisions. Other NASREM tenets listed here might also conflict with this
guideline. For example the “seven + or - two” tenet suggests adding hierarchy (and
therefore additional interfaces) in order to manage complexity and improve human
understanding. The “order of magnitude” tenet can also suggest the addition of more
levels in the hierarchy and additional interfaces again in the interest of complexity
management and understandability. As always, the engineer’s function is to perform
the engineering analysis necessary to arrive at a viable engineering design trade-off.

2.4. Order of magnitude between levels

In dealing with the issues of minimizing the impact of complexity and providing
for human understanding of the design result we have devised a rule of thumb that
suggests limiting the scope of the problem domain for any individual controller node
or NASREM level to roughly one order of magnitude in terms of the resolution of the
maps and the geometric models it uses for planning and in terms of the timing horizon
it uses for planning and scheduling. This rule of thumb should not be strictly inter-
preted especially at the higher NASREM levels since its intent is to limit the number
of planning steps any one planner needs to plan into the future. In some cases the
number of required planning steps is event driven rather than strictly related to the
passage of time. Good engineering judgement needs to be exercised when applying
this rule of thumb since the objective here is to limit the scope of complexity in the
coordination of tasks and to limit the number of planning steps (or decision points in
a program) to be planned into the future to roughly less than ten. Some individual
steps may have very long durations.

2.5. Limit control node complexity

This tenet seeks to manage task knowledge complexity and human understanding
of the design result by adding hierarchy when more than roughly nine subordinates
must be supervised by a controller. This rule takes its name from George Miller’s
work. He empirically found that human beings are able to manage seven + or - two
things at a time without losing understanding. This guideline suggests adding a super-
visory controller whenever more than nine subordinates must be controlled and that
the optimum number of subordinates per supervisor is roughly five. Again software
engineering judgement is always called for in applying these guidelines. It is possible
that in a particular application only one supervisor may be needed for a much greater
number of subordinates (e.g., twenty or more) if all of the subordinates are perform-
ing very similar tasks. We sometimes see this pattern in human organizations such as
in assembly line production.

2.6. SP/WM/BG/HI functions assumed to exist in each node.

The NASREM architecture has evolved at NIST from a controls system point of
view. It is grounded in the notion that closed-loop control is a fundamental construct
of the architecture style. With this in mind we have defined a generic controller node
as the basic processing entity through which closed-loop control can be implemented.
Therefore, a generic controller node must be capable of performing the basic closed-
loop control functions of Sensory Processing (SP), World Modelling (WM), Behavior
Generation (BG), and Human Interface (HI). A NASREM architecture is then built
of NASREM controller modules interconnected to form a hierarchical tree structure
of controllers with each controller forming a node in the hierarchy. Furthermore the
controllers are designed to be interconnected to form nested closed-loop control with
each controller node contributing to one layer of problem abstraction and decompo-
sition.

While the NASREM architecture philosophy focuses on highly modular closed-
loop control, it does not require closed-loop control within every implemented con-
troller. In fact it would be possible to implement an entire NASREM compatible ar-
chitecture without including real-time sensory input for closed-loop control. This im-
plies that while SP, WM, BG and HI functions may exist within every controller node,
there is no requirement that more than one exist in any implemented controller node.
In practice we often see open-loop controllers implemented at the lowest level of
NASREM especially when implementing a simple on/off control function. In this
case closed-loop control might be implemented at the next higher level through a su-
pervisory controller node. One or more subordinates could be dedicated to SP func-
tions and others might be dedicated to performing BG functions. The supervisory
node in this example might perform simple SP functions and more complex WM and
BG functions.

2.7. Human Interface is possible at all nodes.

Recognizing that every practical system must have a human interface at some lev-
el and that it is usually desirable to develop intelligent machine systems in an evolu-
tionary manner, we believe it is prudent to build in the possibility for human interface
to every controller node as part of the system design philosophy as opposed to adding
the human interface capability in an ad hoc manner as the need arises.

2.8. Design emphasis on concurrency

This tenet suggests that it is generally more cost effective to add microcomputer
hardware (single board computers and memory) to a multiprocessor environment
than to increase the computing power of a central processing unit (CPU) and the com-
plexity of its operating system and the control system application programs to dynam-
ically manage the central processing unit’s computing power. As a consequence of
this tenet, the NASREM methodology differs from traditional procedural program-
ming methods, which are aimed at producing sequential code to efficiently execute
on a single CPU, in that it is an inherently paralle]l programming method which seeks
to develop software processes (controller modules) which will execute in a cyclical
and concurrent manner on multiple CPUs. These software processes can then be eas-

ily distributed across a multiprocessor hardware computing environment in order to
mect real-time execution constraints. In general this method is less concerned with
optimizing the utilization of any one CPU and more concerned with minimizing soft-
ware complexity and providing a means to ensure detemnmsue and verifiable real-
time performance.

2.9. Controllers as finite state machines

In keeping with the controls systems origins of the NASREM philosophy as well
as the emphasis placed on programming for concurrent multiprocessor environments,
this tenet defines a NASREM controller module as a finite state machine. Finite state
machines are characterized as functioning on a read/compute/write execution cycle.
Such machines divide time into discrete increments based on their execution cycle.
An instant of time in this context is considered to be one read/compute/write execu-
tion cycle. Finite state machines deal with external stimuli as snap-shots in time and
have a deterministic and verifiable response which depends solely on the internal
state of the machine and the event or external stimulus being presented to the machine
(through global memory) at any given instant in execution time. Finite state machines
can exhibit amazingly complex and intelligent dynamic responses to uncertain stimuli
even though they are completely deterministic and verifiable. These properties make
them an excellent choice as the basic execution model for NASREM applications.

A state-driven NASREM implementation would typically employ periodic “ser-
voing” or data sampling as opposed to “event-driven” interrupt processing in order to
cut down on processing overhead and at the same time ensure deterministic and ver-
ifiable behavior (in terms of execution time and response time) particularly at the low-
est levels of the architecture. At higher levels of an implementation - and lower per-
formance bandwidths - it is often convenient to transition to an asynchronous control
technique.

3. System Development Methodology

The NASREM project development steps are intended to provide a formal and
systematic approach to analyzing, designing, and implementing practical intelligent
machine systems which would typically perform some physical work in a given en-
vironment (e.g., operate a vehicle, produce parts, perform construction or mining
tasks, operate a sensor, etc.). If several competing conceptual designs exist, the meth-
od could be used to evaluate the feasibility and expected performance of each design,
as part of the engineering analysis and selection process. The method might also be
used to analyze the potential benefits and trade-offs which might result from selecting
among different system components within a particular conceptual design (e.g., se-
lecting different types or sets of sensors and actuators or integrating “black box™ off-
the-shelf subsystems). The NASREM methodology described in this paper should be
interpreted as an iterative, real-time software development method. The steps listed
are roughly in the sequential order, however the developer(s) should allow iteration
within and between steps.

The method describes integration of executable controller modules in a bottom-
up process. As these controller modules are integrated, their behavior can be studied

and their performance measured to further refine the control hierarchy. This process
should involve revisiting and revising the original problem description and require-
ments as well as the organizational structure and definition of the NASREM control-
ler modules. As the running system evolves it should be used as a tool to enhance the
dialogue with the domain experts and sponsors. By demonstrating the evolving sys-
tem, developers, experts and customers are better able to refine requirements and ex-
plicitly capture the domain expert’s knowledge.

The process of developing a NASREM system is shown in Figure 1. A more com-
plete description of the entire system development process is provided in [11). The
process starts with a definition of the task goals, and the performance requirements of
the control system in order to develop a complete problem description task scenarios,
and expectations.

In Step 2, the system developer gathers knowledge of the problem domain to de-
fine the information which is fundamental to the problem. While Step 1 was con-
cerned with the goals for the system, Step 2 is concerned with the tools which will
help achieve these goals. Consequently, the processes must be defined. This clearly
depends on the specific equipment and problem but could include information such
as the object and workspace geometry, machine and load kinematics, dynamics and
coordinate systems, etc.

A systems analysis is performed in Step 3 to conceptualize the application in
terms of Resource Management (NASREM Hierarchy), Data Management, Human
Interface Management, and Communications Management requirements. The archi-
tectural design analysis of the Resource Management requirements defines and mod-
els the set of resources bottom up. Then, the controller framework, i.e., NASREM hi-
erarchy is built to establish the relationship between resources which exhibit common
spatial and temporal characteristics. This is followed by a mapping of the capabilities
into NASREM hierarchial control nodes. Capabilities may be distributed across indi-
vidual controller boundaries. The NASREM systems analysis continues by looking at
the data management. One defines a set of objects which can be acted upon and lists
their relevant attributes in terms of their hierarchical structure, €.g., points, linear fea-
tures, surfaces, objects and groups.

Each application needs a vocabulary which is typically unique to the application,
In Step 4, NASREM task analysis, the task tree vocabulary for each level of the hier-
archy is defined. This includes the tasks, the task frames, procedures, etc. This step
balances the system goals with the capabilities of the system. One iteratively refines
the system controller and/or the task descriptions based on either deficiencies in the
task objectives, resource capabilities, information modeling, or communication inter-
faces until the goals of the tasks are met by the specified system,

In Step 5, software modules are coded and tested. The code for each controller
node is developed using generic NASREM coding templates in a bottom up fashion.
Simulators are developed to drive each controller in a closed-loop fashion and the hu-
man interface and display simulators are developed as required. Each software mod-
ule is tested and measured to determine the expected performance of each controller
node. This may involve subdividing controller nodes into concurrent processes to
meet real-time performance goals.

Step 6 integrates and tests the controller nodes. One maps the concurrent process-
es onto actual computer hardware and assesses the performance. First, controller
nodes have only their communication interfaces. When these interfaces are verified,
code is added module by module to test controller node functionality, As more mod-
ules are integrated into the system, it is possible that more controller nodes may be
necessary to meet the design criteria.

The last step is maintenance. The above six steps are iterated in order to fix, im-
prove, or extend the controller nodes and the application system.

4. System Development Methodology for a NASREM Robot Controller

4.1. Description of the General Approach for Real-time System Development

This section will concentrate on steps 5 and 6 of Figure 1, from code development
toward integrating the code into the real-time robot control system. First, atomic units
are defined. These atomic units are the smallest chunk of software, which if broken
into smaller chunks, would result in a less efficient implementation. For example, ro-
bot inertia compensation should be done for all joints together. If each degree of free-
dom is implemented in parallel, the communication between the degrees of freedom
would take more time than that gained by the parallelization of the processes. The im-
plementation of the atomic unit, which is called a process, has five properties:

« Continuous cyclic execution

* Read-compute-write execution cycle

« Concurrency

* Interfaces through global data system

* Activation/finactivation
First, a process repeatedly performs its designated function. Secondly, each execution
cycle of a process consists of reading inputs, performing computation, and writing
outputs. A process that repeatedly performs this cycle is said to be cyclically
executing. Since a process can run concurrently and asynchronously with the other
processes in the system, a process should be capable of retaining some context from
cycle to cycle in the form of process variables. Process variables are not globally
defined. The fourth property, however, states that the inputs and outputs of a process
communicate via the global data system, and therefore must be globally defined.
Finally, a process can be made active or inactive. For example, there is no need to
compute inverse kinematics if the current control algorithm does not use the
information. This allows the computing resources to be shared.

Once each process has been programmed and debugged as well as possible on the
host system, it is cross compiled for use in the target system. Then, each process is
assigned to a processor. For economic reasons, there will be fewer processors than
processes. The process to processor assignment is critical to achieve good runtime
performance. This assignment is revised often to hone the real-time performance of
the system. Consequently, it should be easy to modify the assignments. At this point
in the design process, load modules for each processor are available,

The load modules are downloaded to the computers in the target system. Depend-

ing on what is downloaded, the goal may be to obtain timing measurements for a par-
ticular algorithm, determine the performance of the algorithm during a task, or mea-
sure the performance of the entire system. At this point the testbed can be used for
any research and development needs of the investigator.

4.2. Atomic Unit to Processor Assignment for the Real-time System

The result of process to processor assignment and the resulting system will be il-
lustrated by looking at the lowest NASREM level, the Servo level. Figure 2 shows the
atomic units associated with the Servo level. The square boxes depict the processes
while the ovals denote the data buffers which communicate through the global data
system. A diagram similar to this is developed for each part of the system so that all
of the processes are identified. Then, the system designer assigns each process to a
particular processor for the real-time execution phase. Figure 3 shows the current
process to processor assignment for the current NIST implementation of NASREM.
The manipulation backplane is shown in the upper half of the diagram. Seven proces-
sors perform the Prim and Servo functions associated with manipulation. One inter-
face card connects the manipulation backplane to the RRC controller (power elec-
tronics for the robot). Also, two BIT-3 parallel interfaces reside in the backplane, one
to connect to the SUN host, the other to connect the Manipulation and Perception
backplanes. The lower half of Figure 3 shows the process to processor assignment for
the perception backplane. With the current configuration, the manipulation Servo
loop, which is the most time critical part of the system, supports a 2.5 ms sampling
rate and a 5 ms loop time for the critical path of most control algorithms.

5. Conclusion

Using a functional architecture helps to improve efficiency in developing and in-
tegrating a system for a particular application. The contribution of this paper is to out-
line a methodology for system development in a way that makes it possible to imple-
ment a system.

6. References

{1] Albus,J.S., McCain, H.G., Lumia, R., “NASA/NBS Standard Reference Model Telerobot Con-
trol System Architecture (NASREM) NIST Tech. Note 1235, NIST, Gaithersburg, MD,
July, 1987.

[2] Fiala, J., “Manipulator Servo Level Task Decomposition,” NIST Technical Note 1255, NIST,
Gaithersburg, MD, October, 1988.

[3]1 Kelmar, L. “Manipulator Servo Level World Modeling,” NIST Tech, Note 1258, NIST, Gaith-
ersburg, MD, December, 1989,

[4] Fiala, J., “Note on NASREM Implementation,” NISTIR 89-4215, NIST, Gaithersburg, MD,
December, 1989.

[5]) Chaconas, K. J., Nashman, M., “Visual Perception Processing in a Hierarchical Control System:
Level 1,” NIST Tech. Note 1260, June, 1988.

[6) Wavering, A. “Manipulator Primitive Level Task Decomposition,” NIST Technical Note 1256,
NIST, Gaithersburg, MD, October, 1988.

[71 Kelmar, L. “Manipulator Primitive Level World Modeling,” NIST Tech. Note 1273, NIST,

Gaithersburg, MD, December, 1989.

[8] Albus,J.S., “System Description and Design Architecture for Multiple Autonomous Undersea
Vehicles,” NIST Technical Note 1251, NIST, Gaithersburg, MD, September, 1988,

[9] Huang, HM., “Hicrarchical Real-Time Control System for Use with Coal Mining Automation,”
Fourth Conference on the Use of Computers in the Coal Industry, Morgantown, WV, June
1990,

[10] Szabo, S., Scoit, H.A., Murphy, K.N., Legowik, S.A., “Control System Architecture for a Re-
motely Operated Unmanned Land Vehicle,” Proceedings of the 5th IEEE International Sym-
posium on Intelligent Control, Philadelphia, PA, September, 1990.

[11] Michaloski, J., “Elements of Real-time Intelligent Control System Design,” NIST Technical
Note, NIST, Gaithersburg, MD, March, 1992

1. Develop problem description, task scenarios and expectations.

L.1.Define the task goals, and performance requirements of the control system,
2. Gather domain knowledge.

2.1.Define processes, object and workspace geometry, machine and load kinematics, dynamics,
and coordinate systems

3. NASREM Systems Analysis. Conceptualize the application in terms of Resource
Management (NASREM Hierarchy), Data Management, Human Interface
Management, and Communications Management requirements

3.1.Perform architectural design engineering analysis of the Resource Management requirements
3.2 Perform Data Management Engineering Analysis
3.3.Perform Communications engineering analysis

3.4 Perform Human Interface engineering analysis

4. NASREM Task Analysis. Perform Task Decomposition vis a vis NASREM
Systems Analysis.

4.1.Develop a task tree vocabulary for communication interfaces based on functional capability
of controller node.

4.2.Define tasks, task frames, and procedures (scripts, process plans, or state graphs/tables),
including timing and synchronization at each controller node.

4.3 Iteratively refine System Controller and/or Task Descriptions based on either deficiencies in
task objectives, resources capabilities, information modeling, or communication interfaces.

5. Code and Test Software Modules.

5.1.Develop code for each controller node using generic NASREM coding templates in a
bottom-up fashion.

5.2.Develop simulators to drive each controller in a closed-loop fashion.

5.3.Develop human interface and display simulators required.
6. Integrate and Test Controller Nodes

6.1.Map the concurrent processes onto actual computer hardware and assess projected
performance expectations.

6.2.Recursively add controller nodes. First, test controller nodes in stand-alone operation. Second
test intra-controller process communication interfaces. Third test inter-controller
communication interfaces. Finally, test the suite of controller node functionality.

7. Maintain

7.LIterate on above steps to fix, improve, modify, extend the controller nodes and application
system,

Figure 1. NASREM System Development Steps

From Prim Level

gravity
WM TD
Joint Space Comp ﬂ Job Assignment
WM /J
Inertia ¢ >
M \Pl.cmd
» WM TD
> Gain Planning
.
| "o (a2)
WM Covector Comp EX omd
Jacobian N
WM
Elbow -
6, 9 Jacobian ™D
Execution
j
SP <
Joint WM
Feedback Fwd Kinematics

data
RRC

Communications

v

K-1607 Controller

Figure 2. Servo Level Boxes Representing Atomic Units

forceftorque

to/from gripper controller sensorball transducer to/from RRC controller
Operator interface Prim Execution forceftorque Servo Execution RRC comm
I;qunm {) ob Assign. Teleoperation processing Servo Planning
g . 3 .
Gripperlalcoumm|m Cartesian Stiff, Joint sensory proc
680x0cpu - 680x0 cpu 680x0 cpu 680x0 cpu 680x0 cpu

Gravity
Joint space comp,
Inertia

Gain

Covector comp.
Jacobian

Elbow Jacobian
680x0 cpu

Forward kinemat.
Servo Job Assign.

680x0 cpu

BIT-3
parallel interface

BIT-3

Filter and predict.

680x0 cpu

Memory board

BIT-3
parallel interface

BIT-3
parallel interface

Sun3/160

Sun3/160

| I I ‘ VME backplane

Cormer extraction

680x0 cpu

Correlate and fit

630x0 cpu

PIPE comm,

680x0 cpu

PIPE interface

frem— to/from PIPE

Figure 3. Process to Processor Assignment for the NIST NASREM Implementation

